Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38669309

RESUMEN

Porous carbons have shown their potential in sodium-ion batteries (SIBs), but the undesirable initial Coulombic efficiency (ICE) and rate capability hinder their practical application. Herein, learning from nature, we report an efficient method for fabricating a carbon framework (CK) with delicate porous structural regulation by biomimetic mineralization-assisted self-activation. The abundant pores and defects of the CK anode can improve the ICE and rate performance of SIBs in ether-based electrolytes, whereas they are confined in carbonate ester-based electrolytes. Notably, ether-based electrolytes enable CK anode to possess excellent ICE (82.9%) and high-rate capability (111.2 mAh g-1 at 50 A g-1). Even after 5500 cycles at a large current density of 10 A g-1, the capacity retention can still be maintained at 73.1%. More importantly, the full cell consisting of the CK anode and Na3V2(PO4)3 cathode delivers a high energy density of 204.4 Wh kg-1, with a power density of 2828.2 W kg-1. Such outstanding performance of the CK anode is attributed to (1) hierarchical pores, oxygen doping, and defects that pave the way for the transportation and storage of Na+, further enhancing ICE; (2) a high-proportion NaF-based solid-electrolyte-interphase (SEI) layer that facilitates Na+ storage kinetics in ether-based electrolytes; and (3) ether-based electrolytes that determine Na+ storage kinetics further to dominate the performance of SIBs. These results provide compelling evidence for the promising potential of our synthetic strategy in the development of carbon-based materials and ether-based electrolytes for electrochemical energy storage.

2.
Small ; : e2308684, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38174613

RESUMEN

Porous carbon has been widely focused to solve the problems of low coulombic efficiency (ICE) and low multiplication capacity of Sodium-ion batteries (SIBs) anodes. The superior energy storage properties of two-dimensional(2D) carbon nanosheets can be realized by modulating the structure, but be limited by the carbon sources, making it challenging to obtain 2D structures with large surface area. In this work, a new method for forming carbon materials with high N/S doping content based on combustion activation using the dual activation effect of K2 SO4 /KNO3 is proposed. The synthesized carbon material as an anode for SIBs has a high reversible capacity of 344.44 mAh g-1 at 0.05 A g-1 . Even at the current density of 5 Ag-1 , the capacity remained at 143.08 mAh g-1 . And the ICE of sodium-ion in ether electrolytes is ≈2.5 times higher than that in ester electrolytes. The sodium storage mechanism of ether/ester-based electrolytes is further explored through ex-situ characterizations. The disparity in electrochemical performance can be ascribed to the discrepancy in kinetics, wherein ether-based electrolytes exhibit a higher rate of Na+ storage and shedding compared to ester-based electrolytes. This work suggests an effective way to develop doubly doped carbon anode materials for SIBs.

3.
Adv Sci (Weinh) ; 10(14): e2207751, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36938864

RESUMEN

Zinc borates have merits of low voltage polarization and suitable redox potential, but usually suffer from low rate capability and poor cycling life, as an emerging anode candidate for Na+ storage. Here, a new intercalator-guided synthesis strategy is reported to simultaneously improve rate capability and stabilize cycling life of N, B co-doped carbon/zinc borates (CBZG). The strategy relies on a uniform dispersion of precursors and simultaneously stimulated combustion activation and solid-state reactions capable of scalable preparation. The Na+ storage mechanism of CBZG is studied: 1) ex situ XRD and XPS demonstrate two-step reaction sequence of Na+ storage: Zn6 O(OH)(BO3 )3 +Na+ +e- ↔3ZnO+Zn3 B2 O6 +NaBO2 +0.5H2 ①, Zn3 B2 O6 +6Na+ +6e- ↔3Zn+3Na2 O+B2 O3 ②; reaction ① is irreversible in ether-based electrolyte while reversible in ester-based electrolyte. 2) Electrochemical kinetics reveal that ether-based electrolyte possesses faster Na+ storage than ester-based electrolyte. The composite demonstrates an excellent capacity of 437.4 mAh g-1 in a half-cell, together with application potential in full cells (discharge capacity of 440.1 mAh g-1 and stable cycle performance of 2000 cycles at 5 A g-1 ). These studies will undoubtedly provide an avenue for developing novel synthetic methods of carbon-based borates and give new insights into the mechanism of Na+ storage in ether-based electrolyte for the desirable sodium storage.

4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362219

RESUMEN

As a universal polymer material, polystyrene (PS) is widely applied in electrical devices and construction. Thus, it is necessary to improve the flame retardancy and electromagnetic shielding properties of PS material. In this work, PS/silicon-wrapped ammonium polyphosphate/Inorganic acid-treated multi-walled carbon nanotubes composites (PS/SiAPP/aMWCNT, abbreviated as PAC) were prepared via methods of filtration-induced assembly and hot-pressing. Morphology and structure characterization demonstrated that SiAPP and aMWCNT had good dispersion in PS and excellent compatibility with the PS matrix. Thermogravimetric analysis revealed that the addition of aMWCNT to PS improved its thermal stability and carbon-forming characteristics. The peak heat release rate, the peak carbon monoxide production rate, and the peak smoke production rate of the PAC10 composite decreased by 53.7%, 41.9%, and 45.5%, respectively, while its electromagnetic shielding effectiveness reached 12 dB. These enhancements were attributed to the reason that SiAPP and aMWCNT synergistically catalyzed the char generation and SiAPP produced free radical scavengers and numbers of incombustible gases, which could decrease the oxygen concentration and retard the combustion reaction. Therefore, the assembled PS/SiAPP/aMWCNT system provides a new pathway to improve the flame retardant and electromagnetic shielding properties of PS.


Asunto(s)
Retardadores de Llama , Nanotubos de Carbono , Retardadores de Llama/análisis , Poliestirenos , Nanotubos de Carbono/química , Fósforo , Polifosfatos/química
5.
J Colloid Interface Sci ; 606(Pt 2): 1193-1204, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492458

RESUMEN

Electroconductive polystyrene (PS) composites with ideal flame-retardant properties are considered as potential electromagnetic interference (EMI) shielding materials. In this work, PS/silicon wrapped ammonium polyphosphate/multi-wall carbon nanotubes (PS/SiAPP/MWCNT) composites with segregated structure were synthesized via the methods of balling mill and hot-pressing. The obtained results revealed that the SiAPP and MWCNT were successfully introduced onto PS spheres and showed uniform distribution on the PS surface. The thermogravimetric analysis showed that PS/SiAPP/MWCNT containing 7 wt% MWCNT exhibited excellent thermal stability. Furthermore, the results of cone calorimeter test indicated that the heat release rate and total heat release of the PS/SiAPP/MWCNT containing a loading of 7 wt% MWCNT were reduced by 60.5% and 33.9%, respectively. In addition, the EMI shielding performance could reach 11 dB. Above results implied that the synergistic effect between the MWCNT and SiAPP effectively enhanced the flame retardant performance of the PS by promoting the generation of dense and continuous char layer to protect the PS from burning. The multiple reflection and adsorption are responsible for improved EMI shielding effectiveness. Therefore, segregated PS/SiAPP/MWCNT hybrid is an up-and-coming candidate for satisfactory EMI shielding materials with exceptional fire retardancy for electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...